J'ai écrit avec quelques camarades du groupe Traces un livre collectif intitulé Les scientifiques jouent-ils aux dés ?, à paraître aux éditions du Cavalier Bleu. Son principe : analyser nombre d’idées reçues sur la science et sur ceux qui la font, en mobilisant les travaux de l'histoire, sociologie et philosophie des sciences. L'ouvrage a été dirigé par Bastien Lelu et Richard-Emmanuel Eastes, et préfacé par Dominique Pestre. Mélodie a déjà publié ses textes sur la vulgarisation et le progrès et après celui sur l'expertise, voici le chapitre sur la méthode scientifique (co-écrit avec Bastien) (version des auteurs, différente de la version finalement publiée).

Le chercheur est-il méthodique ?

Au cinéma, la découverte scientifique est souvent présentée à la façon d'une enquête policière. Une question remplace le crime, des expériences remplacent les indices et les témoins, le coupable devient l’inconnu ou une maladie à combattre. Le chercheur mène l’enquête, investigateur entièrement dévolu à sa cause, dont la passion confine parfois à l’acharnement. Méthodique, il avance par étapes, vient à bout des questions qui s’enchaînent et lève peu à peu le voile de l’ignorance qui recouvre la réalité. Cette vision de la science suppose une méthode implacable de raisonnement et d'élimination des fausses pistes. Le héros scientifique qui triomphe a toutes les qualités morales du "bon" : honnête, méticuleux, il est mû par le seul désir d’accéder à la vérité.

À l'école, on tente alors d'inculquer aux élèves les fondements de cette « méthode scientifique », qui verrait systématiquement les hypothèses succéder aux observations, les expériences adéquates menant ensuite à la conclusion, celle-ci s'imposant d'elle-même pourvu que l'élève-apprenti ait bien fait son travail. Pourtant, et l'on pourrait s'en étonner, la démarche suivie par un chercheur dans son laboratoire ne suit en rien cette progression linéaire, aussi fictive qu'idéalisée. Elle est plutôt faite de tâtonnements, de retours en arrière, de hasards et de conclusions hâtives avant d'en arriver aux « bons » résultats.

Étudiant des biologistes au travail dans les années 1980, Bruno Latour et Steve Woolgar ont ainsi assisté à des raisonnements impropres ("La bombésine se comporte parfois comme la neurotensine ; la neurotensine fait décroître la température ; donc la bombésine fait décroître la température") qui suffisent pourtant "à lancer une recherche qui devait conduire à des résultats salués comme une contribution exceptionnelle". Et ces anthropologues et sociologues des sciences de conclure à propos des procédures utilisées par les scientifiques : "si elles sont logiques, elles sont stériles ; si elles sont fructueuses, elles sont logiquement incorrectes".

Enfin, on peut mentionner le fait que parler d'une seule méthode scientifique, qui serait universelle, ne tient pas longtemps lorsque l'on prend conscience de l'infinie diversité des pratiques. Diversité d'une discipline à l'autre, tout d'abord, le travail du généticien n'ayant pas grand chose de commun avec celui du climatologue qui utilise des modèles numériques pour appréhender les phénomènes ou de l'archéologue qui ne peut pas mener d'expériences sur le passé. Diversité géographique ensuite, les variations observées d'un pays à l'autre ou même d'un laboratoire à l'autre permettant d'ailleurs à la recherche de ne pas s'enliser trop longtemps si un choix de méthode s'avère contre-productif. Diversité, enfin, au cours du temps, les pratiques de ce début de XXIe siècle n'ayant plus grand chose de commun avec celles qui avaient cours ne serait-ce qu'il y a cinquante ans.

D'où vient l'impression de méthode ?

Si le sentiment qu'il existe une « méthode scientifique » est cependant si fort, c'est peut-être que les écrits des scientifiques eux-mêmes l'alimentent. En effet, pour que son travail soit considéré comme valable, tout scientifique se doit de le publier, c'est à dire le mettre en forme, à la fois pour qu'il soit compréhensible par ses pairs (collègues) et pour qu'il puisse être mis en rapport avec leurs propres travaux. Ceci demande un processus d'écriture spécifique qui passe par une reconstruction totale du travail dont il rend compte. Oubliées, les erreurs successives ! Mis de côté, les choix faits au petit bonheur ! Sans oublier les hypothèses, formulées bien souvent après que les résultats les aient suggérées…

Ces reconstructions parsèment l’histoire des sciences et ont entretenu l’idée d’une méthode scientifique gravée dans le marbre. Prenons l’exemple de Gregor Mendel, ce moine glorifié comme le scientifique idéal aux vertus monastiques, cherchant la vérité et non la gloire. On raconte qu’il a mis en évidence les lois de l’hérédité grâce à un travail méticuleux sur de longues années, croisant des centaines de lignées de pois, comptant et recomptant des milliers de grains. Pour obtenir ces résultats qui sont encore considérés comme valides aujourd’hui, il aurait compté la répartition des formes après chaque croisement entre parents différents, obtenant le ratio “magique” de 9:3:3:1 dans la génération-fille. En réalité, il ne conçut pas un protocole expérimental parfait dès le départ puisque des vingt-deux caractères qu'il a étudiées, seuls sept ont été réellement exploitées (pois lisse ou ridé, plante haute ou naine, gousse enflée ou flétrie…), les autres donnant des résultats soit inexploitables soit incohérents avec le reste. Il s’y cachait d’autres phénomènes liés à la transmission des caractères entre générations, écartés à l’époque et compris seulement plus tard !

Un travail collectif

L'exemple de Mendel nous enseigne également que la communauté scientifique procède à des ajustements et des réinterprétations constantes des conclusions de chacun : des deux "lois de Mendel" bien connues des biologistes, une seule était présente dans sa publication de 1866, et ce sont des biologistes modernes qui ont interprété les résultats de Mendel comme montrant à la fois la ségrégation des caractères et leur assortiment indépendant dans les gamètes. En 1900, travaillant avec d’autres concepts et d'autres outils, trois chercheurs ont retrouvé indépendamment les uns des autres des résultats équivalents — plusieurs décennies après que Mendel et ses travaux furent tombés dans l'oubli. Malgré l’individualité de chaque scientifique, les interprétations dont il se permet et la diversité des approches possibles, un fond commun rend donc possible la constitution d’un corpus solide de connaissances.

Le travail de publication et de transmission des résultats est vital pour la communauté scientifique, c'est-à-dire en fait pour chacun des chercheurs qui, pris individuellement ou même au niveau de leurs laboratoires, ont besoin des résultats des autres pour pouvoir continuer à avancer. Les pairs représentent tout à la fois la base de travaux antérieurs sur laquelle un scientifique fonde son travail, et l'instance de jugement qui valide (ou non) ses propres résultats avant leur publication dans des revues académiques (un processus que l'on nomme le "peer review", ou "relecture par les pairs"). Cette interaction mutuelle entre l'individuel et le collectif passe par une mise en forme idéalisée du travail que l'on confond trop souvent avec la méthode qu'aurait suivi le scientifique. C'est bien de la dimension collective de l'entreprise scientifique qu'il s'agit.

On peut remarquer que le développement des sciences dans le monde antique, la "révolution scientifique" du XVIIe siècle en Europe ainsi que l'accélération et la professionnalisation du travail scientifique au XXe siècle tiennent pour partie aux avancées fulgurantes des dispositifs de transmission des connaissances — l'écriture d'abord, puis l'imprimerie et enfin les technologies de l'information et de la communication. Si ces deux progrès sont intimement liés, c'est bien parce que pour exister, le savoir scientifique doit être formalisé, transcrit puis diffusé au corps des scientifiques et de la société. Si l'idée de "génie individuel" en sort un peu écorné, nous gagnons dans la dimension collective de la science sa valeur et sa robustesse. Ce que soulignait Anatole France en écrivant dans sa nouvelle "Balthasar" (1889) que "la science est infaillible ; mais les savants se trompent toujours".

Bibliographie

  • Douglas Allchin (2003), "Scientific myth-conceptions", Science Education 87(3), 329-351.
  • Ron Curtis (1994), "Narrative form and normative force: Baconian story-telling in popular science", Social Studies of Science 24(3), 419-461.
  • Pierre Laszlo (1999), La Découverte scientifique, Paris : Presses universitaires de France.
  • Bruno Latour et Steve Woolgar (1988), La Vie de laboratoire. La Production des faits scientifiques, Paris : La Découverte.
  • Robert K. Merton (1973), The Sociology of Science, Chicago : University of Chicago Press.
  • Hans Reichenbach (1953), The Rise of Scientific Discovery, Los Angeles : University of California Press.
  • Isabelle Stengers et Bernadette Bensaude-Vincent (2003), 100 mots pour commencer à penser les sciences, Paris : Les empêcheurs de penser en rond. Voir en particulier le chapitre Méthode.
  • René Taton (1955), Causalités et accidents de la découverte scientifique. Illustration de quelques étapes caractéristiques de l'évolution des sciences, Paris : Masson.